
Solution Brief

Snowflake Infrastructure as Code (IaC)

continuus.ai

Maximize the time your engineers spend on solving problems, not setting up environments. Automate the creation,
modification, and deletion of critical Snowflake objects with Continuus' Infrastructure as Code (IaC) for Snowflake. 

The basic premise of Infrastructure as Code (IaC) is that the state of your
cloud resources should be defined by configuration files (typically
checked into a version-controlled repository). Changes to the resources
are made by updating those configuration files and “deploying” the
change using a CLI. It’s best practice to run this in a CI/CD pipeline.​ 

When using IaC, you can understand the state of your resources by
simply reading the configuration files, and you can collaborate on
changes to your resources in the same way as you would other code:
with Git history, pull requests, code reviews, etc.​ 

IaC tools were originally focused on managing the servers in a cloud
computing environment, but today you can manage the configuration of
basically any third-party tool your team uses. 

Consider our Snowflake use case: we don’t need to configure the actual
virtual machines our account uses; Snowflake does that for us! But we do
want to manage key Snowflake resources like Users and Databases.​

GitOps refers to using a Git repository as the single source of truth for all
the code that goes into building infrastructure and deploying
applications. By using a version control system such as Git as the single
source of truth, engineers are able to update the underlying source code
for their applications and infrastructure in a continuous delivery format​.

GitOps automates infrastructure and code management using a Git
workflow with effective CI/CD. After code is merged to the main branch,
the CI/CD pipeline initiates the change in the environment. 

Manual changes and human error can cause configuration drift in
Snowflake environments, but GitOps automation and continuous
deployment overwrites them so the environment always deploys a
consistent desired state.

See next page for Benefits and Sample Technology Stack for IaC

SolutionChallenge
Snowflake is a cloud-based data
platform which proudly boasts
near-zero management​. This is
certainly true; however, even if it
does not require much in terms of
patching, upgrades, or
performance tuning, any
sufficiently complex data platform
will manage hundreds – if not
thousands – of objects. In
Snowflake some of these key
objects include: Warehouses,
Users, Roles, Databases, Schemas,
Tables, Views, and the Grants that
control access to those objects. 

Creating, modifying, and deleting
these Snowflake objects can be
done in the Snowflake web
interface or by running Snowflake
SQL.​ Most Snowflake clients who
migrate their analytics platform to
Snowflake do all their Snowflake
account configuration by hand. In
the best case, they create
runbooks with template SQL
snippets; in the worst case, the
process of configuring some
aspect of their account was
“institutional knowledge” that lived
only in one engineer’s head.​

This can leave clients with a
Snowflake account that is working
well, but is hard to adjust and
even harder to understand.​ 

v

https://www.continuus.ai/


continuus.ai

Want to learn more about how Continuus can push your financial services cloud
forward? Contact us to get started. info@continuus.ai

Collaborate Build Test Deploy Run

Auditability
Problem: Answering questions about users, roles,
and access is difficult and requires a highly privileged
Snowflake user.​
Solution: Easily manage users, roles, and data access
using tools like Flyway and Liquibase.

Standardization
Problem: Which role/user should be used to create
new objects? The role used by the creator matters
because that role becomes the object owner and
defines the default privileges on the object. Manual
creation of objects is error-prone since an engineer
might accidentally create an object using the settings of
their unrelated last session.​
Solution: Deployment process always uses same role.
All objects owned by same role. Further permissions
are completed via the deployment pipeline. 

Collaboration
Problem: A privileged user modifying a resource in
the Snowflake console or by running SQL does so in
a vacuum. While we trust that our teammates know
what they’re doing, we’d prefer to be able to have a
formal code review process of these changes.​ 
Solution: All DML/DDL scripts are deployed via the
CI/CD pipeline via the pipeline role. All changes are
reviewed and approved prior to running. No changes
are made manually without oversight or review. 

Cost
Problem: Engineers are spending an inordinate amount
of time on tedious tasks like writing the SQL command
to adjust the default query timeout of a given
warehouse. Again, our engineers’ time is valuable and
we shouldn’t spend it here. 
Solution: Stacking all the time savings, we end up
saving the enterprise on engineering and consulting
costs.

History
Problem: All account changes are recorded and
accessible via the QUERY_HISTORY view. However,
parsing those historical logs is problematic for a several
reasons: requires both SQL and Snowflake knowledge,
there is a limited history of changes, and we’d much
prefer the changes be version-controlled with
something universal like Git.​
Solution: The code itself (in the repository) serves as
the history with all changes captured for each release. 

Speed
Problem: It’s annoying and slow to change resources by
hand. Our engineers’ time is valuable; we shouldn’t
spend it on tedious tasks like writing the SQL command
to adjust the default query timeout of a given
warehouse.​
Solution: Once built, updates are incremental and save
massive amounts of time that engineers can spend
innovating and building new solutions.

Snowflake IaC Benefits and Sample Technology Stack

https://www.continuus.ai/
mailto:info@continuus.ai

